Image Denoising Method Using curvelet Transform and Wiener Filter
نویسنده
چکیده
A new image denoising method based on curvelet transform is proposed. The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. Here, we pursue "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. Denoising of an image is done by processing an image through Wiener filter and using curvelet transform [1], [6]. Experimental results show that proposed denoising technique performs better in terms of the PSNR. We have compared PSNR values of proposed algorithm with that of wavelet and curvelet in RBG and YCbCr regions.
منابع مشابه
An Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملQuantitative and Qualitative Evaluation for Gamma Radiographic Image Enhancement
This paper presents some image processing techniques that can be used for radiographic image enhancement. Contrast enhancement, filtering, denoising, and interpolation processes are carried out in this paper. Contrast enhancement is carried out using adaptive histogram equalization. Filtering is carried out using median, Wiener, Lee, and Kuan filters. Wavelet and curvelet transforms are used fo...
متن کاملImage Denoising Based on Curvelet Transforms and its Comparative Study with Basic Filters
Image denoising is basic work for image processing, analysis and computer vision. This Work proposes a Curvelet Transformation based image denoising, which is combined with the low pass filtering and thresholding methods in the transform domain. Through simulations with images contaminated by white Gaussian noise, this scheme exhibits better performance in both PSNR (Peak Signal-to-Noise Ratio)...
متن کاملImage deblurring using empirical Wiener filter in the curvelet domain and joint non-local means filter in the spatial domain
In this paper, an efficient image deblurring algorithm is proposed. This algorithm restores the blurred image by incorporating a curvelet-based empirical Wiener filter with a spatial-based joint non-local means filter. Curvelets provide a multidirectional and multiscale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditiona...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کامل